
Gaussian Processes

An Introduction



Gaussian Processes are the 
generalization of a Gaussian distribution 
over a finite vector space to a function 

space of infinite dimension





Let’s start with Linear Regression :)



Birth frequencies by date
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A better way?
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A better way?

Consider

...within reason :)



Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions 

for unobserved values of x
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Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions 

for unobserved values of x



A sensible prior

Input values that are close together should produce similar 
outputs



Functions as mappings of inputs to outputs



Functions as mappings of inputs to outputs

x = [  -5.0,    -4.8,    -4.6,    …,    4.6,     4.8,      5.0    ]
y = [-1.085, -0.862, -0.596, …, -1.081, -1.007, -0.863 ]



Kernel function

A kernel function is a function that outputs a measure of 
similarity between two data points.

Gaussian kernel:



An Aside: The “Kernel Trick”

Explode the feature space to create a more 
flexible model

Rewrite algorithms in terms of dot products 
between examples

Note that the dot product of two vectors is a 
measure of their similarity

Replace this with a more general “kernel 
function” that measures their similarity without 
you ever having to compute the actual 
mapping in the higher dimensional space



An Aside: The “Kernel Trick”

Explode the feature space to create a more 
flexible model

Rewrite algorithms in terms of dot products 
between examples

Note that the dot product of two vectors is a 
measure of their similarity

Replace this with a more general “kernel 
function” that measures their similarity without 
you ever having to compute the actual 
mapping in the higher dimensional space

Gaussian Processes can be thought of as applying the 
kernel trick to an infinite-dimensional feature space.



The Bell Curve aka Normal or Gaussian Distribution



The Multivariate Gaussian Distribution



The Multivariate Gaussian Distribution

Assume our f(x)’s are multivariate Gaussian distributed:



The Multivariate Gaussian Distribution

With test points X_test = [1, 2, 3, 4]



The Multivariate Gaussian Distribution

We are assuming our function outputs are jointly Gaussian, 
and now we have observed some of them...

Vector of training points (observed data)

Vector of test points



Conditional distribution

With this assumption

We can get the conditional distribution of the test outputs 
given the training outputs



The posterior distribution

Many pages of matrix algebra later… 

We have the mean and covariance matrix for the posterior 
distribution and now we can sample from it!



Sampling from the posterior
Recall that when we have a univariate normal

This can be expressed in terms of the standard normal

We need the same idea for multivariate normals 

Where



Sampling from the posterior
Recall that when we have a univariate normal

This can be expressed in terms of the standard normal

We need the same idea for multivariate normals 

Where
Cholesky decomposition



Samples from the posterior



Kernel parameters

How similar are the numbers 3 and 4?



Effect of the length scale parameter

The distance you have to move in input space before the 
function value can change significantly



Effect of the length scale parameter

The distance you have to move in input space before the 
function value can change significantly



Effect of the vertical scale parameter



Code



Samples from the posterior - noisy data



Optimizing the hyperparameters

Maximum likelihood, as in scikit-learn:

MCMC



Bayesian Optimization

Gaussian Processes can be used to optimize the 
hyperparameters of other models such as Neural Networks. 

This is how Bayesian Optimization works.





Tuning Neural Networks is hard

How do you figure out the right values for all these things?
● Number of hidden units
● Number of layers
● Weight penalty
● Learning rate
● Whether to use dropout



Traditional approaches

● Grad student descent :)
● Grid search

○ List all possible values of each parameter and then 
systematically try all the combinations

● Random search
○ Randomly sample combinations of parameter values 

(better than grid search)



Bayesian Optimization

● Exploration of a single combination of parameters is relatively expensive
● We’d like to choose the next combination to try as intelligently as possible
● Using a GP we take the output from previous runs of the NN as training points 

and then come up with the mean and variance of unobserved areas of the 
parameter space

● The next combination to try will be the one with the highest Expected 
Improvement (EI)

● This idea originally came from the world of gold mining and was called kriging
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Bayesian Optimization
From 
https://arimo.com/data-science/201
6/bayesian-optimization-hyperpara
meter-tuning/

https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
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Pros & Cons of GPs

Pros

● Predictions can interpolate observations
● Predictions are probabilistic so that one can compute confidence intervals
● Flexibility: you can use different kernels

Cons
● They lose efficiency in high dimensional spaces – namely when the number of 

features exceeds a few dozens.



Resources

● Rasmussen & Williams book: 
http://www.gaussianprocess.org/gpml/

● Nando de Freitas’ lectures on YouTube 
https://www.youtube.com/watch?v=4vGiHC35j9s

● Chapter 15 of Kevin Murphy’s ML book
● PyMC docs on GPs 

http://pymc-devs.github.io/pymc3/notebooks/GP-introduction.html
● Geoff Hinton’s talk on Bayesian Optimization of NNs 

https://www.youtube.com/watch?v=con_ONbhD2I
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Resources

● Bayesion Optimization in Scikit Learn 
https://thuijskens.github.io/2016/12/29/bayesian-optimisation/

● Bayesian Optimization paper by Snoek, Larochelle & Adams: 
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-l
earning-algorithms.pdf

● Gaussian Processes for Big Data by Hensman, Fusi & Lawrence: 
http://www.auai.org/uai2013/prints/papers/244.pdf

● My blog post :) 
http://katbailey.github.io/post/gaussian-processes-for-dummies/
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Thanks!

@katherinebailey


