
Gaussian Processes

An Introduction

Gaussian Processes are the
generalization of a Gaussian distribution
over a finite vector space to a function

space of infinite dimension

Let’s start with Linear Regression :)

Birth frequencies by date

Birth frequencies by date

Birth frequencies by date

Birth frequencies by date

Birth frequencies by date

A better way?

A better way?

A better way?

Consider

...within reason :)

Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions

for unobserved values of x

Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions

for unobserved values of x

Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions

for unobserved values of x

Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions

for unobserved values of x

Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions

for unobserved values of x

Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions

for unobserved values of x

Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions

for unobserved values of x

Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions

for unobserved values of x

Gaussian Processes in a nutshell

Over some restricted input space...
● Come up with a prior distribution over functions.
● Observe some data
● Come up with a posterior distribution over functions.
● Sample from that posterior distribution to get predictions

for unobserved values of x

A sensible prior

Input values that are close together should produce similar
outputs

Functions as mappings of inputs to outputs

Functions as mappings of inputs to outputs

x = [-5.0, -4.8, -4.6, …, 4.6, 4.8, 5.0]
y = [-1.085, -0.862, -0.596, …, -1.081, -1.007, -0.863]

Kernel function

A kernel function is a function that outputs a measure of
similarity between two data points.

Gaussian kernel:

An Aside: The “Kernel Trick”

Explode the feature space to create a more
flexible model

Rewrite algorithms in terms of dot products
between examples

Note that the dot product of two vectors is a
measure of their similarity

Replace this with a more general “kernel
function” that measures their similarity without
you ever having to compute the actual
mapping in the higher dimensional space

An Aside: The “Kernel Trick”

Explode the feature space to create a more
flexible model

Rewrite algorithms in terms of dot products
between examples

Note that the dot product of two vectors is a
measure of their similarity

Replace this with a more general “kernel
function” that measures their similarity without
you ever having to compute the actual
mapping in the higher dimensional space

Gaussian Processes can be thought of as applying the
kernel trick to an infinite-dimensional feature space.

The Bell Curve aka Normal or Gaussian Distribution

The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution

Assume our f(x)’s are multivariate Gaussian distributed:

The Multivariate Gaussian Distribution

With test points X_test = [1, 2, 3, 4]

The Multivariate Gaussian Distribution

We are assuming our function outputs are jointly Gaussian,
and now we have observed some of them...

Vector of training points (observed data)

Vector of test points

Conditional distribution

With this assumption

We can get the conditional distribution of the test outputs
given the training outputs

The posterior distribution

Many pages of matrix algebra later…

We have the mean and covariance matrix for the posterior
distribution and now we can sample from it!

Sampling from the posterior
Recall that when we have a univariate normal

This can be expressed in terms of the standard normal

We need the same idea for multivariate normals

Where

Sampling from the posterior
Recall that when we have a univariate normal

This can be expressed in terms of the standard normal

We need the same idea for multivariate normals

Where
Cholesky decomposition

Samples from the posterior

Kernel parameters

How similar are the numbers 3 and 4?

Effect of the length scale parameter

The distance you have to move in input space before the
function value can change significantly

Effect of the length scale parameter

The distance you have to move in input space before the
function value can change significantly

Effect of the vertical scale parameter

Code

Samples from the posterior - noisy data

Optimizing the hyperparameters

Maximum likelihood, as in scikit-learn:

MCMC

Bayesian Optimization

Gaussian Processes can be used to optimize the
hyperparameters of other models such as Neural Networks.

This is how Bayesian Optimization works.

Tuning Neural Networks is hard

How do you figure out the right values for all these things?
● Number of hidden units
● Number of layers
● Weight penalty
● Learning rate
● Whether to use dropout

Traditional approaches

● Grad student descent :)
● Grid search

○ List all possible values of each parameter and then
systematically try all the combinations

● Random search
○ Randomly sample combinations of parameter values

(better than grid search)

Bayesian Optimization

● Exploration of a single combination of parameters is relatively expensive
● We’d like to choose the next combination to try as intelligently as possible
● Using a GP we take the output from previous runs of the NN as training points

and then come up with the mean and variance of unobserved areas of the
parameter space

● The next combination to try will be the one with the highest Expected
Improvement (EI)

● This idea originally came from the world of gold mining and was called kriging

Bayesian Optimization

Bayesian Optimization

Bayesian Optimization
From
https://arimo.com/data-science/201
6/bayesian-optimization-hyperpara
meter-tuning/

https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/

Pros & Cons of GPs

Pros

● Predictions can interpolate observations
● Predictions are probabilistic so that one can compute confidence intervals
● Flexibility: you can use different kernels

Cons
● They lose efficiency in high dimensional spaces – namely when the number of

features exceeds a few dozens.

Resources

● Rasmussen & Williams book:
http://www.gaussianprocess.org/gpml/

● Nando de Freitas’ lectures on YouTube
https://www.youtube.com/watch?v=4vGiHC35j9s

● Chapter 15 of Kevin Murphy’s ML book
● PyMC docs on GPs

http://pymc-devs.github.io/pymc3/notebooks/GP-introduction.html
● Geoff Hinton’s talk on Bayesian Optimization of NNs

https://www.youtube.com/watch?v=con_ONbhD2I

http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
https://www.youtube.com/watch?v=4vGiHC35j9s
https://www.youtube.com/watch?v=4vGiHC35j9s
http://pymc-devs.github.io/pymc3/notebooks/GP-introduction.html
http://pymc-devs.github.io/pymc3/notebooks/GP-introduction.html
https://www.youtube.com/watch?v=con_ONbhD2I
https://www.youtube.com/watch?v=con_ONbhD2I

Resources

● Bayesion Optimization in Scikit Learn
https://thuijskens.github.io/2016/12/29/bayesian-optimisation/

● Bayesian Optimization paper by Snoek, Larochelle & Adams:
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-l
earning-algorithms.pdf

● Gaussian Processes for Big Data by Hensman, Fusi & Lawrence:
http://www.auai.org/uai2013/prints/papers/244.pdf

● My blog post :)
http://katbailey.github.io/post/gaussian-processes-for-dummies/

https://thuijskens.github.io/2016/12/29/bayesian-optimisation/
https://thuijskens.github.io/2016/12/29/bayesian-optimisation/
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://www.auai.org/uai2013/prints/papers/244.pdf
http://www.auai.org/uai2013/prints/papers/244.pdf
http://katbailey.github.io/post/gaussian-processes-for-dummies/
http://katbailey.github.io/post/gaussian-processes-for-dummies/

Thanks!

@katherinebailey

